Moku:Lab
Python API Migration Guide

Upgrading Moku:Lab to software version 3.0 unlocks a host of new features. When updating, API
users must take extra steps to migrate their scripts to the new Moku API package. This migration
guide outlines API changes, new features available in the 3.0 update, and any backward

compatibility limitations.

© 2023 Liquid Instruments. All rights reserved. liquidinstruments.com



Moku:Lab Python API Migration Guide

Table of Contents

Overview

Release 3.0 new features

New features
Multi-instrument Mode
Moku Cloud Compile
Oscilloscope
Spectrum Analyzer
Phasemeter
Waveform Generator
Lock-In Amplifier
Frequency Response Analyzer
Laser Lock Box
Other

Upgraded API Support

Backward compatibility limitations

API
Regressions
RAM disk for data logging
Data logging to CSV
Non-backwards-compatible changes
Data scaling in LIA
Waveform Generator output must be enabled to use as modulation source/trigger

Moku Python API

Currently supported instruments
Installation

Moku API changes

Oscilloscope example
Sequence steps
Differences

Oscilloscope functions list

O 000w 0 O O OO0 Uyl olo U1 10 DM DMDAMDMWWWWW WW

- =
- O

Downgrade process

—
-

Steps

2 | © 2023 Liquid Instruments. All rights reserved. liquidinstruments.com



http://www.liquidinstruments.com/

Moku:Lab Python API Migration Guide

Overview

Moku:Lab software version 3.0 is a major update that brings new firmware, user interface, and APIs
to Moku:Lab hardware. The update brings Moku:Lab in line with Moku:Pro and Moku:Go, making it
easy to share scripts across all Moku platforms. The update unlocks a host of new features to many
of the existing instruments. It also adds two new features: Multi-instrument Mode and Moku Cloud
Compile. There are some subtle behavioral differences as well, outlined in the Backward
compatibility section.

This is a major update that affects the APl architecture, and therefore the new Python API v3.0
package will not be backward compatible with existing Pymoku scripts. APl users will need to port
their scripts to the new Moku API package if they upgrade their Moku:Lab to version 3.0. APl users
with significant custom software development should carefully consider the level of effort required
to port their existing code. Moku:Lab 1.9 is not recommended for new deployments and all
customers are encouraged to upgrade. If issues arise after upgrading, users will have the option to
downgrade to software version 1.9.

This migration guide outlines advantages of updating and potential complications to Moku:Lab
version 3.0. It also outlines the process to upgrade the Python APl and how to downgrade your
Moku:Lab if necessary.

Release 3.0 new features

New features

Software version 3.0 brings Multi-Instrument Mode and Moku Cloud Compile to Moku:Lab for the
first time, as well as many performance and usability upgrades across the suite of instruments.

Multi-instrument Mode

Multi-instrument Mode on Moku:Lab allows users to deploy two instruments simultaneously to
create a custom test station. Each instrument has full access to the analog inputs and outputs along
with interconnections between instrument slots. The interconnections between instruments support
high-speed, low-latency, real-time digital communication up to 2 Gb/s, so instruments can run
independently or be connected to build advanced signal processing pipelines. Instruments can be
dynamically swapped in and out without interrupting the other instrument. Advanced users can also
deploy their own custom algorithms in Multi-instrument Mode using Moku Cloud Compile.

Moku Cloud Compile

Moku Cloud Compile allows you to deploy custom DSP directly onto the Moku:Lab FPGA in Multi-
instrument Mode. Write code using a web browser and compile it in the cloud; Moku Cloud
Compile deploys the bitstream to one or more target Moku devices.

Oscilloscope

e Deep memory mode: save up to 4M samples per channel at full sampling rate (500 MSa/s)

Spectrum Analyzer

e Improved noise floor

3 | © 2023 Liquid Instruments. All rights reserved. liquidinstruments.com



http://www.liquidinstruments.com/

Moku:Lab Python API Migration Guide

e | ogarithmic Vrms and Vpp scale
e Five new window functions (Bartlett, Hamming, Nuttall, Gaussian, Kaiser)

Phasemeter

e Frequency offset, phase, and amplitude can now be output as analog voltage signals

e Users can now add DC offset to output signals

e The phase-locked sine wave output can now be frequency multiplied up to 250x or divided
down to 0.125x

e Improved bandwidth range (1 Hz to 100 kHz)

e Advanced phase wrapping and auto-reset functions

Waveform Generator

e Noise output
e Pulse width modulation (PWM)

Lock-In Amplifier

e Improved performance of low-frequency PLL locking

e The minimum PLL frequency has been decreased to 10 Hz

e Theinternal PLL signal can now be frequency multiplied up to 250x or divided down to 0.125x
for use in demodulation

e 6-digit precision for phase values

Frequency Response Analyzer

e Increased maximum frequency from 120 MHz to 200 MHz

e |ncrease maximum sweep points from 512 to 8192

e New Dynamic Amplitude feature optimizes output signal automatically for best measurement
dynamic range

e New In/In1 measurement mode

e Input saturation warnings

e The math channel now supports arbitrary complex-valued eqguations involving the channel
signals, enabling new types of complex transfer function measurements

e |nput signals can now be measured in dBVpp and dBVrms in addition to dBm

e The progress of the sweep is now displayed on the graph

e The frequency axis can now be locked to prevent accidental changes during a long sweep

Laser Lock Box

e |Improved block diagram shows scan and modulation signal paths

e New locking stages feature allows customizing lock procedure

e Improved performance of low-frequency PLL locking

e 6-digit precision for phase values

e Improved performance of low-frequency PLL locking

e The minimum PLL frequency has been decreased to 10 Hz

e The PLL signal can now be frequency multiplied up to 250x or divided down to 0.125x for
use in demodulation

4 | © 2023 Liquid Instruments. All rights reserved. liquidinstruments.com


http://www.liquidinstruments.com/

Moku:Lab Python API Migration Guide

Other

e Added support for the sinc function to the equation editor which can be used to generate
custom waveforms in the Arbitrary Waveform Generator
e Convert binary Ll files to CSV, Python, or NumPy formats when downloading from the device

Upgraded API Support

The new Moku Python API v3.0 package provides enhanced functionality and stability. It will receive
regular updates to improve performance and introduce new features.

Backward compatibility limitations
API

The new Moku Python API v3.0 package is not backwards compatible with the previous Moku:Lab
Pymoku v1.9 package. The python scripting arguments and return values are wholly different. If you
have extensive custom software development utilizing the Moku:Lab Pymoku, consider the impact
of migrating all your software to be compatible with the new API.

While the Moku:Lab Pymoku package will no longer receive updates, Liquid Instruments will still
continue to provide support for users who are unable to migrate to the new API package.

Find detailed examples for each instrument in the new Moku Python API v3.0package to serve as a
base line for converting prior Pymoku development to the new API package.

Regressions

RAM disk for data logging

Version 1.9 had a 512 MB filesystem in the device’s RAM, which could be used to log data at high
sampling rates. In version 3.0, logging to RAM is no longer available. To enable data logging, an SD
card is required. Accordingly, the maximum acquisition speed changes as well. Version 1.9
supported up to 1 MSa/s, whereas version 3.0 supports up to 250 kSa/s at 1 channel and 125 kSa/s
at 2 channels. Even at lower speeds and with an SD card, workflows which included saving multiple
high-speed logs to RAM and then later copying them to the SD card or the client will no longer be
supported.

Data logging to CSV

Version 1.9 had the ability to save data directly to a CSV file while logging. This feature is not
directly available on version 3.0. Users whose workflow included saving CSV files directly to an SD
card or the client will now need to first convert the binary file to CSV, either using the client app or
by installing the standalone Liquid Instruments File Converter onto the computer that they use for
data processing.

5 | © 2023 Liquid Instruments. All rights reserved. liquidinstruments.com



http://www.liquidinstruments.com/

Moku:Lab Python API Migration Guide

Non-backwards-compatible changes

Data scaling in LIA

In version 1.9, we implemented data scaling such that multiplying two 0.1V DC signals resulted in a
0.02 V DC output. In version 3.0, we changed this such that the result was 0.01V DC, which is
more in line with customers' intuitive expectations.

Waveform Generator output must be enabled to use as modulation source/trigger

In version 1.9, a different channel’s waveform could be used as a modulation or trigger source in
the Waveform Generator, even if that channel’s output was disabled. This was removed in version
3.0. Users who want to do cross-modulation without needing to unplug the outputs of their device
would need to adjust their workflow.

Moku Python API

The Moku Python API'v3.0 package is intended to provide Python developers the resources needed
to control any Moku device and, ultimately, the ability to incorporate these controls into larger end-
user applications.

The new Moku Python API v3.0 package provides the following:

o Fully functional example Python scripts for each instrument.

e All Python scripts are provided with comments, which are easy to understand and can serve
as an end user’s starting point for customization and adaptation.

e A set of functions providing full control over the Moku device.

Currently supported instruments

Arbitrary Waveform Generator
Data Logger

Digital Filter Box

FIR Filter Builder

Frequency Response Analyzer
Laser Lock Box

Lock-in Amplifier
Oscilloscope

Phasemeter

10. PID Controller

1. Spectrum Analyzer

12. Waveform Generator

13. Multi-instrument Mode

14. Moku Cloud Compile

©ONOU A WN S

6 | © 2023 Liquid Instruments. All rights reserved. liquidinstruments.com



http://www.liquidinstruments.com/

Moku:Lab Python API Migration Guide

Installation

Requirements

e Python 3.5+

The Python API v3.0 could conflict with Pymoku v1.9. It is recommended
to uninstall the Pymoku v1.9 package by calling <pip uninstall pymoku>

1. Download and install the moku Library

At a command prompt, install the moku library using pip. You can easily check that the
installation succeeded by running the simple Python command listed below. If there is no
output from the Python command, then the installation has succeeded.

$: pip install moku

$: python —c 'import moku'
$:

2. Download the data files

The Moku Scripting API for Python requires data files to be downloaded before any
program can be run. These data files are several hundred megabytes. Please ensure you
have a suitable internet connection before you proceed, this step is only required to be run
whenever you install or upgrade the library. It may take a while to complete, depending on
your internet connection.

$: moku download

| © 2023 Liquid Instruments. All rights reserved.


http://www.liquidinstruments.com/

Moku:Lab Python API Migration Guide

The new Moku Python API v3.0 architecture is sufficiently different from its predecessor and
therefore not backwards compatible with Pymoku scripts. The following simplified Oscilloscope
example shows the differences between the Pymoku v1.9 and new Python API v3.0 packages and
serves as a road map for porting existing code.

Oscilloscope example

Pymoku v1.9 Python API v3.0

pymoku example: Basic Oscilloscope

#
#
#
# This script demonstrates how to use the Oscilloscope instrument
# to retrieve a single frame of dual-channel voltage data

#

# (c) 2019 Liquid Instruments Pty. Ltd.

#

from pymoku import Moku rom moku.instruments ort Oscilloscope
from pymoku.instruments import Oscilloscope

# Connect to your Moku by its device name
# Alternatively, use Moku.get_by serial('#####') or Moku('192.168.###. ##%") Oscilloscope(*192.168.#4 #', force_connect
m = Moku.get_by_name('Moku')

try:
R i.set_timebase(
i = m.deploy_or_connect(0Oscilloscope)

# Span from -1s to 1s i.e. trigger point centred
i.set_timebase(-1, 1)

data i.get_data(
nt(datal'chl'], datal

# Get and print a single frame worth of data (time series
# of voltage per channel) P pt Exception e
data = i.get_data(timeout=10) print (f'Exceptior
print(data.chl, data.ch2, data.time)

finally:
m.close() i.relinquish_ownership()

Table 1: Oscilloscope API compare example

Sequence steps

Import Moku Python API v3.0 packages.

Claim the Moku ownership and upload Oscilloscope bitstream to Moku.
Set time base and set the left- and right-hand span for the time axis.
Get data, acquire a single frame of the data from the Oscilloscope.

End client session by releasing the Moku ownership.

s wN S

The sequence described above is a simplified example to illustrate the differences between the
legacy and new API packages. Aside from beginning a client session, uploading an instrument
bitstream to Moku, and ending the client session, an end user can exercise any number of
functions in various order to meet the needs of their application.

| © 2023 Liquid Instruments. All rights reserved.


http://www.liquidinstruments.com/

Moku:Lab Python API Migration Guide

Differences

Here, we look at the differences between the two APIs for each step in the sequence.

1. Claim the Moku ownership and upload Oscilloscope bitstream to device. Compared with
Pymoku v1.9, the Moku API v3.0 has completely different functions:

Pymoku v1.9

Python API v3.0

Function

get_by_name()

deploy_or_connect()

Oscilloscope()

Allowed fields and
values

name: string
timeout: float

force: bool

instrument: the class of the
instrument wish to deploy

set_default: bool

use_external: bool

ip: string

serial: string
force_connect: bool
ignore_busy: bool
persist_state: bool
connect_timeout: float

read_timeout: float

2. Settime base. The function is the same, but the allowed arguments are slightly different:

Pymoku v1.9

Python API v3.0

Function

set_timebase()

set_timebase()

Allowed fields and
values

t1: float
t2: float

t1: float
t2: float

strict: bool

3. Get data. The functions and the allowed arguments are the same, but the returned data type
and length are different:

Pymoku v1.9

Python API v3.0

Function

get_data()

get_data()

Allowed fields and
values

timeout: float

wait: bool

timeout: float

wait_reacquire: bool

Return length

16383 points per frame

1024 points per frame

4. Release the Moku ownership:

Pymoku v1.9

Moku API v3.0

Function

close()

relinquish_ownership()

9 | © 2023 Liquid Instruments. All rights reserved.



http://www.liquidinstruments.com/

Moku:Lab Python API Migration Guide

Oscilloscope functions list

Pymoku v1.9

Python API v3.0

set_source()
set_trigger()
get_data()
set_frontend|()
set_defaults()
set_timebase()
set_xmode()
set_precision_mode()
sync_phase()
get_frontend()
get_samplerate()
get_realtime_data()
gen_rampwave()
gen_sinewave()
gen_squarewave()
gen_off()
set_samplerate()

set_framerate()

set_sources()
set_trigger()

get_data()
set_frontend()
set_defaults()
set_timebase()
disable_input()
enable_rollmode()
set_acquisition_mode()
sync_output_phase()
get_frontend()
get_samplerate()
save_high_res_buffer()
generate_waveform()
get_acquisition_mode()
get_sources()
get_timebase()
get_output_load()
get_interpolation()
set_output_load()
set_hysteresis()
set_interpolation()
set_input_attenuation()
set_source()
osc_measurement()

summary()

The Moku Python APl is based upon Moku API. For full Moku APl documentation, refer to the Moku
APl Reference found here https://apis.liquidinstruments.com/reference/.

Additional details for getting started with Moku Python API can be found at
https://apis.liquidinstruments.com/starting-python.html.

10 | © 2023 Liquid Instruments. All rights reserved.

liquidinstruments.com



http://www.liquidinstruments.com/
https://apis.liquidinstruments.com/reference/oscilloscope/enable_rollmode.html
https://apis.liquidinstruments.com/reference/
https://apis.liquidinstruments.com/starting-python.html

Moku:Lab Python API Migration Guide

Downgrade process

If the upgrade to 3.0 has proven to limit, or otherwise adversely affect, something critical to your
application, you can downgrade to the previous version 1.9. This can be done through a web
browser.

Steps

1. Contact Liquid Instruments and obtain the file for firmware version 1.9.

2. Type your Moku:Lab IP address into a web browser (see screen shot).

3. Under Update Firmware, browse and select the firmware file provided by Liquid
Instruments.

4. Select Upload & Update. The update process can take more than 10 minutes to complete.

File Edit View History Bookmarks Tools Help

@ || « Moku x ‘ 4 N
< - G O Q 192.168.2.234/#/settings ¥¥  Q Search © W H =
| LIQUID : ;
S>> INSTRUMENTS {} settings {0} Registers
Upload License
General Ethernet Access Point Wifi
Device Name Moku black 2
Time Zone Australia/Sydney s
Serial Number 707
Hardware Version 2.0 Moku:Lab
Firmware Version 578

Save

Update Firmware

Choose a file or drop it here... Browse
Upload & Update

Figure 11: Downgrade procedure

11 | © 2023 Liquid Instruments. All rights reserved. liquidinstruments.com



http://www.liquidinstruments.com/

