Moku:Pro Application Note January 10, 2024

Moku Cloud Compile
A Getting Started Guide

Moku Cloud Compile is an innovative feature available on Moku:Pro, Moku:Lab, and
Moku:Go. The Moku family of test and measurement tools contain FPGA-based instruments
and Moku Cloud Compile allows you to deploy custom VHDL code to a Moku. This code
can provide custom features and interact with the existing instruments to unlock new and
unigue instrumentation only possible due Moku Instrument-on-Chip architecture.

This tutorial will guide show you how to create a Moku Cloud Compile account through to
coding and deployment of some VHDL examples. By the end of this guide, you will have the
fundamental knowledge to compile and deploy custom code to your Moku. This note uses
Moku:Pro, though all these examples are also useable on Moku:Lab and Moku:Go.

1 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/

Table of Contents

Prerequisites 3
Goals and more information 3
Overview 3
Multi-instrument Mode and Cloud Compile 4
Setting up a Moku Cloud Compile account 5
VHDL example #1: Routing inputs to outputs 7
ENTET TE VHDL COU@ oottt 7
BUIIA TNE COA@ oot 8
DEPIOY TN COAR it s et 10
VHDL example #2: subtracting/adding inputs 1
VHDL example #3: Reading Control Registers 12
VHDL example #4: Scaling and offset inputs / DSP slice 13
VHDL example #5a: Output limit setting 14
VHDL example #5b: Flexible output limit 14
VHDL example #6: PWM from analog input 15
Summary 17
Questions or comments? 17

2 Moku Cloud Compile: Getting Started Guide (v24-0109)

© 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/

Prerequisites

Moku device with MiM and MCC. This application note refers to Moku:Pro; but all the examples can be deployed
on Moku:Lab or Moku:Go.

Multi-Instrument-Mode (MiM) Moku Cloud Compile (MCC)

If your Moku does not have MiM or MCC, please contact us at support@liquidinstruments to enquire about
evaluations and upgrades.

Goals and more information

By the end of this tutorial, you will have created a Moku Cloud Compile account, coded and deployed several
simple VHDL custom functions, and have the knowledge to take your use of MCC further. There is additional
getting started information online: https://www.liquidinstruments.com/blog/2022/09/02/starting-with-moku-cloud-
compile/

Overview

The Moku Cloud Compile tool enables you to design custom processing and features for implementation on Moku
platforms. Compared to CPU and application specific integrated circuits (ASIC) based DSP approaches, FPGA
platforms provide near ASIC-level latency and performance while still being software programmable, more like a
traditional CPU.

While there are many widely used software languages that can be employed to write software for CPU based
designs, FPGA programming is generally limited to VHDL or Verilog. These typically require a large and complex
local toolchain installation. The platforms available for deploying VHDL code are usually limited to evaluation
boards from FPGA vendors or a variety of limited functionality, open-source hardware boards. Moku Cloud Compile
provides an integrated, cloud based VHDL compiler and combines with the reliability of Moku hardware.

Moku:Pro with Moku Cloud Compile addresses the need for a high-performance laboratory instrument with
research-grade hardware and custom processing without the overhead of traditional FPGA design software. MCC
compiles your custom VHDL in the cloud and delivers a package ready to deploy to any MCC-enabled Moku.

Coding and testbench Moku Cloud Compile Deploy to Moku

SS = ===

A
compile.liquidinstruments.com

Simulate and test

3 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/
https://www.liquidinstruments.com/blog/2022/09/02/starting-with-moku-cloud-compile/
https://www.liquidinstruments.com/blog/2022/09/02/starting-with-moku-cloud-compile/

Multi-instrument Mode and Cloud Compile

Multi-instrument Mode (MiM) allows multiple instruments to be deployed and operate simultaneously. At the
highest level, MiM presents four slots representing four partitions of the FPGA on Moku:Pro, and two on Moku:Go
and Moku:Lab. You can deploy a flexible arrangement of instruments into these slots. Figure 1 shows the MiM
interface with an Oscilloscope deployed in Slot 1 and a Spectrum Analyzer deployed in Slot 2, while Slots 3 and 4
remain to be filled. The available instruments include a Phasemeter, Laser Lock Box, Data Logger, Digital Filter
Box, PID Controller, Oscilloscope, Spectrum Analyzer, Lock-in Amplifier, Waveform Generator, Frequency
Response Analyzer, FIR Filter Builder, Arbitrary Waveform Generator, Logic Analyzer, and Cloud Compile.

It is the Moku Cloud Compile instrument, which occupies Slot 4 in Figure 2, where you can deploy your compiled
designs. MiM thus enables your designs to interact with the Moku instruments in addition to the ADC and DAC
inputs and outputs.

T STy I DRSS o

o
Cickor 1 W

Spectrum Lockln FIR Fiter Waveform "“"‘"“Y Aeokraey
uilder Generator

detyans fihiract s Generator

Oxctocope 0 Digital Fiter Laser Lock Logic Gloud
J’ Ol o P K e o

QJ/ : :

ik f[-
e

i0 iXx

Figure 1: Building a MiM system

Build your system -}

Click or tap the arrow icon on a slot to enter that instrument

Bus2 ‘ 2 Y
sott st s s
Oscioscope. Spectrum Coud Comple:
i
e < i
& ? ? x
N o Q@ @
1, ©]
= 2 In2
ind DN W0 < @ © 49 Ly OJ e
w2 w3 oxt  omz
S & & 7 ¥

oc:1 M0 oc: 1m0 0dB:avep  0dB:2vpp
-20d8:4Vpp 2008:4Vpp -20dB:2Vpp v so0tm  S00tem

Figure 2: MiM showing available instruments

4 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/

Setting up a Moku Cloud Compile account

Before you can compile or deploy code to a Moku, you need an online
account. This is a simple process:

LIQuUID
@g) INSTRUMEN
Welcome
= YOU can Setup an MCC user aCCOUHt at Lnginml.iquidlnslg;n::i(lzmcnminueloc\wd
compile.liguidinstruments.com
Email address
Password @

Forgot password?

If you're a first-time user, you'll need to select “Sign up.” If you're an existing _

Don't have an account? Sign up

user, log in with your username or email address, then enter your password.

or

G Continue with Google

l LIQUID
<S> INSTRUMENTS

i . . . § Welcome
The Sign-up page requires only a valid email address and user-defined ) o )
Sign Up to Liquid Instruments to continue to

password. Cloud Compile.

Email address

Password (e

Already have an account? Log in

OR

G Continue with Google

Gnce signed up and logged in, you

will see the Projects page, which

- : ) Project list === 5 Projects [ e |
initially will be empty, as shown in )

Fi gure 3. Devices —— = wmoscT © LaTesTUILD LasT uPDATED

<[>

Examples =—————p © Hithere, it e he you dont

have any projects a the moment.
Would you like to creste one?

Preference =————p o

Figure 3: New project menu

5 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/
http://compile.liquidinstruments.com/

Before you write your first VHDL example, you should configure a
device to target. Select the Devices tab and configure as shown in
Figure 4. Choose a convenient name and then select Hardware version,
Firmware version and No. of slots as shown. You can determine the
firmware version of your Moku via the desktop app (right-click on the
Moku icon -> device info) or on the iPad app (touch and hold the Moku
icon at the “Select your device” screen).

Configure Device X

Name

Lab MokuPro

Adistinet target device configuration
Hardware Version

mokupro =

Firmware Version

551 s

No. of Slots

4 B

Figure 4: Configure new Moku device

6 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com



https://www.liquidinstruments.com/

£

VHDL example #1. Routing inputs to outputs
Enter the VHDL code

Now that your Moku Cloud Compile (MCC) account is set up and you are familiar with the interface, you will write,
compile, and deploy the most basic instrument. Your simple first instrument will simply take the Moku Cloud
Compile slot’s input signals and connect them directly to the outputs.

To get started, select ‘New Project’ and enter an appropriate name. This example is “Inputs20utputs”.

architecture Behavioural of CustomWrapper is
begin

OutputA <= Inputh;

OutputB <= InputB;

end architecture;

Figure 5: Full code for example #1; Input2Outputs.vhd

The code for this first example is shown in Figure 5Error! Reference source not found. This code must define the
architecture of the entity ‘CustomWrapper’. ‘CustomWrapper’ is the template to which the MCC design must

conform. It provides the basic I/O port definitions of the custom MCC instrument. The full definition is given in the
online documentation : https://compile.liquidinstruments.com/docs/wrapper.html.

(5% Projects / Inputs20utputs | Save. ‘ o eua | (Y-

Files 4+ Inputs20utputsshd -

SR u20upuna s s [

~ Target Device

MokuPro361

~ Latest Buld

26776be
- O

221112022 21:59:47
|
Reports  Astifacts

@ Last updated: 1/0ct/2021 (s year age) | Line 1ol LVHD |
L bitstreams targz |
~ Logs

Figure 6: New file in editor

With the “Inputs20utputs” project open in the editor, create a new file named “Inputs2Outputs.vhd”, shown in
Figure 6.

7 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/
https://compile.liquidinstruments.com/docs/wrapper.html

Enter the text of Figure 5. It should look like Figure 7.

|8 5 | ®ou |-

use IEEE.Std Logic_1184.all;
use IEEE.Wumeric_std.all;

of s

begin
> Qutputa <= Inpuea;
Cutputs <= Inputs;

end szchitectures

® I

. Target Device

MokuProSé1

~ Latest Build
O e

Reports A

Listupdated: 1/0C/2071 fa yex ) | Uine 11,C11WHD |

L bitstreams.tar.gz ~ logs

Figure 7: VHDL code in editor

Build the code

Select the “Target device”, "Save” and then “Build”. The code will then be submitted to the MCC server, and you

@
can select the Build tab to observe the process. This will take several minutes to complete.

Build 6153d143e414f9f25951bcfc

Details STATUS COMPLETE AT
31/Dec/1969 16:00:00
Logs O - E s © s

fToading route data...

fl Processing options...

Partial bitstream contains 23188384 bits.
Writing bitstream ./custom pblock_INSTRO_partial.bit...
Process Partition "pblock_ INSTR1"

Bl 10ading data files...

BBl processing optio:

Figure 8: Build underway

» o«

Once the code compilation is complete, the “Synthesize”, “Route”, Report” and “Bitstream” should all be green.
At the very bottom of this screen is the bitstream, or artifact, ‘bitstream.tar.gz’{ The file “bitstream.tar.gz” can then
be downloaded to your local PC by clicking on the small download icon. Do not unzip or untar this file.

Itis likely you will see many compiler or synthesizer warnings; these can mostly be disregarded for our purpose.
However, any errors would need attention as they will halt the build process.

8 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/
spkuh
Highlight
This sentence previously only appeared in the Deploy the code section.  I moved it hear and then reference the downloaded bistream file again in Deploy section.  

spkuh
Highlight


Build 6153d143e414f9f25951bcfc

Details STATUS COMPLETE AT
O success 28/5ep/2021 19:52:27

Logs " € Auto Seroll

Reports util_hie.rpt -
timing_summary.rpt i
power.rpt =
clock_util.rpt =
timing.rpt =
util.rpt :

Artifacts bitstreams.targz B

Figure 9: Successful build

9 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments


https://www.liquidinstruments.com/

Deploy the code

Now using the Moku app, select MiM and then configure the slots and I/O as shown in Figure 10. This will prepare
the Moku:Pro for the Moku Cloud Compile bitstream.

Build your system

Click or tap the arrow icon on a slot to enter that instrument

Custom instrument

Figure 10: MiM slot configuration for example 1

To deploy the bitstream, tap the Moku Cloud Compile instrument and select “Upload bitstream” as seen in Figure
10. Browse and select the file “bitstream.tar.gz” previously downloaded to your local PC.

To test your new custom instrument, configure the Slot 1 Waveform Generator with a 10 MHz sine wave on Output
A and a 1 MHz ramp wave on Output B. This then passes through our simple instrument. By deploying the

10.000 000 000 000 MHz

1.000 0 Vpp

0.000 °

10.000 000 000 OO0 MHz

= Frequency

1.000 000 000 000 MHz

500.0 mVpp
A 00000

Figure 11: Slot 2 Waveform Generator setup

Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments


https://www.liquidinstruments.com/

Oscilloscope in Slot 3, we can observe the correct “pass through” operation of the MCC instrument deployed
between them in Slot 2.

00 mvV
600 mv

400 mV

Math channel .

=200 mv

-12.6 us -124 us -12.2 ps -11.8 us

A) Frequency B) Frequency

10.00 MHz 996.2 kHz
\ )

Figure 12: Slot 4 Oscilloscope confirmation of MCC operation

Example 1illustrated in detail the steps required to compile and deploy a simple VHDL example.

architecture Behavioural of CustomWrapper
is
begin
OutputA <= InputA + InputB;
OutputB <= InputA - InputB;
end architecture;

Example 2 shows the VHDL to add and subtract inputs. While this is also a basic example, it has many practical
scenarios in the test and measurement world. Summing or subtracting signals in the digital domain without the
need for digital to analog conversions and an external analog summing amplifier simplifies many applications.

Users are encouraged to take this example and repeat the compile and deploy steps outlined in example #1.
Verification might, like the first example, consist of using MiM with a Waveform Generator in Slot 1, Moku Cloud
Compile in Slot 2, and an Oscilloscope in Slot 3. Visual confirmation of correct operation could consist of adding
and subtracting sine waves that are alternatively in phase and 180 degrees out of phase.

Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments


https://www.liquidinstruments.com/

VHDL example #3: Reading Control Registers

Example 3 introduces the use of the control registers. Access the registers on the Moku: App interface for the MCC
instrument once deployed by clicking the MCC instrument and selecting Open Instrument. Users can change these
32-bit control registers in the app and use them in the VHDL code. In example 3, the Least Significant Bit (LSB) of
Controll is used as an enable; when set to ‘", InputA and InputB are passed to OutputA and OutputB respectively.
When Control1 LSB is set to ‘07, the outputs are set to O.

library IEEE;
use IEEE.Std Logic 1164.all;
use IEEE.Numeric Std.all;

architecture Behavioural of CustomWrapper is
begin
with Controll (0) select
OutputA <= InputA when '1',
(OTHERS => '0') when others;

with Controll (1) select
OutputB <= InputB when '1',
(OTHERS => '0') when others;
end architecture;

4 Cloud Compile - Slot 2 - Moku-000155 = a x
S
Register Decimal Decimal Hexadecimal Binary
(Unsigned) (Signed)
contrlo > P oo T Sons eee
Contran g oL eememr | o soos soon
Control2 » Pl oo | e sano oo
Contrls » Pl eememn | o cono oon
ol » P e e sons e
Contrls 0 o] [omooes | | 00 cons oo oeow
Contols ’ oI essn o0 B 000 oo o oo
Contel? ' oL o | L e oonn oono
Contols 0 oL emmowo | L Coes cono aune
Contols 0 o) [ossaoma ] | 00 e oo oooo
Contron0 ’ )l XN g
Conteo ' ol emowe | L o oono oune
Contrn2 0 o emmowo | L iies cono ause
Controts 0 of [ossaome | | (50 Cone oooo oans
Controts ’ o [ osamomo | LS5 Gone oood aans
Contols " oL emmowo | L Cone oo oune
Auto commis @) @

Figure 13: Control registers

12 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/

VHDL example #4: Scaling and offset inputs /
DSP slice

This example is slightly more complex than the first three examples.

The code references the VHDL library Moku. Support, a Liquid Instruments library. Further information on its
contents is available on the Help section of the MCC website. Specifically, the entity ScaleOffset is named.
This entity wraps a specific hardware block that is dedicated to performing a multiply and add function. This entity
is instantiated as block named ‘DSP’ and used to provide math function of :

Output = (Input * Scale) + Offset

library Moku;
use Moku.Support.ScaleOffset;

architecture Behavioural of CustomWrapper is
begin
-- 7Z = X * Scale + Offset
-- Clips Z to min/max (prevents over/underflow)
-- Includes rounding
-- One Clock Cycle Delay
DSP: ScaleOffset
port map (
Clk => Clk,
Reset => Reset,
X => InputA,
Scale => signed(Controll (15 downto 0)),
Offset => signed(Control2 (15 downto 0)),
Z => OutputA,
valid => '1"',
OutValid => open
)

end architecture;

In this example, both scale and offset are 16-bit, signed 2's complement numbers. Scale is mapped from -1to +1.
Additionally, the output, Z, is clipped to prevent over or under flowing of the math operation. There is further

information on ScaleOffset, including how to scale beyond -1to +1in the online documentation:
https://compile.liquidinstruments.com/docs/support.html#scaleoffset

Another feature of this example is the use of Controll and Control2 as shown in example 3. Access these control
registers from the Moku: application to provide input parameters to the MCC custom instrument, in this case
changing the signal scaling and offset without rebuilding the design.

13 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/
https://compile.liquidinstruments.com/docs/support.html#scaleoffset

£

VHDL example #5a: Output limit setting

Example #5a provides a way to clip an output signal to an upper (or lower) limit.

Just as in example #3, this example uses the Moku . Support library, this time using the ‘c1ip’ function.
The OutputA is now assigned to the clipped, lower 9 bits of InputA. This provides 2”*power clipping function, i.e.,
the signal is clipped to the range O - 2°.

library IEEE;

use IEEE.Numeric Std.all;
library Moku;

use Moku.Support.clip;

architecture Behavioural of CustomWrapper is
begin

OutputA <= resize(clip(Inputad, 8, 0), 16);
end architecture;

VHDL example #5b: Flexible output limit

Example #5b provides a way to clip an output signal to any upper and lower limit.

Whereas example #5a would provide a crude but fast clipping to a power of 2, this example provides a more
generalized clipping function. The OutputA is assigned to InputA but clipped to the range of +2387 and -7462

library IEEE;
use IEEE.Numeric Std.all;

library Moku;
use Moku.Support.clip val;

architecture Behavioural of CustomWrapper is
begin
OutputA <= clip val(InputA, -7462, 2387);
end architecture;

14 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/

VHDL example #6: PWM from analog input

Example 6 is more complicated. It generates a pulse width modulation (PWM) signal from the analog InputA. It
comprises two files, Counter.vhdl and pwm.vhdl. Users enter these as separate files in the MCC file editor
before building together. This example is specific to Moku:Pro and its 312.5 MHz clock, but can be adapted for
Moku:Lab and Moku:Go with 125 MHz and 31.25 MHz clocks, respectively. For more information on the
differences between Moku Cloud Compile on Moku:Go, Moku:Lab, and Moku:Pro, read the datasheet here.

-- counter.vhdl

library IEEE;

use IEEE.Std logic_1164.all;
use IEEE.Numeric_Std.all;

--Output Strobe every 27EXPONENT / INCREMENT Input Strobes

--Will gquantize to round integers but maintains overflow,

--will average out over time,

entity Counter is

so
but will have a +-1 cycle jitter.

generic (
EXPONENT positive := 8;
PHASE90 boolean := false
)i
port (
Clk in std _logic;
Reset in std _logic;
Enable in std logic;
Increment in unsigned;
Strobe out std logic

)7
end entity;

architecture Behavioural of Counter is

signal Count
begin

unsigned (EXPONENT downto

0)s

assert Increment'length <= Count'length severity FAILURE;

process (Clk)
begin

is

if rising edge (Clk) then

end 1if;
end process;

if Reset

elsif Enable

else

end if;

'l' then
Count <= (others =>
if PHASE90 then

Count (EXPONENT - 1)

'0");
<= '1"';
end 1if;

'l' then

--Trim the MSB but allow overflow into it.

--This gives a single Clk cycle output pulse on Strobe.
Count <= resize (Count (Count'left-1 downto 0), Count'length) + Increment;

Count (Count'left) <= '0';

Strobe <= Count (Count'left);

end architecture;

15 Moku Cloud Compile: Getting Started Guide (v24-0109)

© 2024 Liquid Instruments liquidinstruments.com



https://www.liquidinstruments.com/
https://download.liquidinstruments.com/documentation/datasheet/instrument/mokucloudcompile/Datasheet-MCC.pdf

-- pwm.vhdl

library IEEE;

use IEEE.Std_Logic_1l164.all;
use IEEE.Numeric_Std.all;

library Moku;
use Moku.Support.ScaleOffset;
use Moku.Support.clip;

architecture Behavioural of CustomWrapper is
constant HI_LVL signed (15 downto 0) :=
constant LO_LVL signed (15 downto 0) :=

signal Value: signed (12 downto 0);
signal Count unsigned (12 downto 0);
signal Pulse50kHz : std logic;
signal Pulse std_logic;
signal OutA std_logic;
begin
INPUT_SCALE: ScaleOffset
port map (

Cclk => Clk,

Reset => Reset,

X => InputA & "O",

Scale => signed(Controll (15 downto 0)),

Offset => signed(Control2 (15 downto 0)),
for +/-1 v internal bus

Z => Value,

Valid => Pulseb50kHz,

OutValid => open

)i

0OSC: entity WORK.Counter

elsif Pulse = 'l' and Count /= 0 then
Count <= Count - 1;
end if;

end if;
end process;

OutputA <= HI_LVL when Count /= 0 else LO_LVL;

end architecture;

x"TFFF";
x"0000";

-- For internal bus 2Vpp;

-- For internal bus of 2Vpp,

generic map (22) -— ~5 kHz from 312.5MHz

port map (Clk, Reset, 'l', to_unsigned(67, 8), Pulse50kHz);
0SC2: entity WORK.Counter

generic map (11) --5kHz/2048 approx 10 MHz

port map (Clk, Pulse50kHz, 'l', to_unsigned(65, 9), Pulse);
process (Clk) is
begin

if rising_edge (Clk) then

if Pulse50kHz = 'l' then
Count <= resize (unsigned(clip (Value, 11, 0)), Count'length);

setting of 0x0200 maps well
offset of 0x0400 works well

16 Moku Cloud Compile: Getting Started Guide (v24-0109)

© 2024 Liquid Instruments liquidinstruments.com



https://www.liquidinstruments.com/

&
Summary

This application note presented some of the advantages and benefits of Moku Cloud Compile when operating as
part of Multi-instrument Mode on a Moku:Pro. The entire process was covered, from entering the simplest possible
VHDL code in example #1through building, deploying, and confirming expected operation.

Further example code was presented and briefly explained, inviting you to experiment with the possibilities opened
by MCC.

Further MCC designs including more complex math operations, custom trigger modes, and other applications can
be developed from these basics.

Questions or comments?

Please contact us at support@liquidinstruments.com

17 Moku Cloud Compile: Getting Started Guide (v24-0109) © 2024 Liquid Instruments liquidinstruments.com


https://www.liquidinstruments.com/
mailto:support@liquidinstruments.com



